Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state

نویسندگان

  • F. Foucart
  • D. Desai
  • L. E. Kidder
  • H. P. Pfeiffer
  • M. A. Scheel
چکیده

Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers. PACS numbers: 04.25.dg, 04.40.Dg, 26.30.Hj, 98.70.-f ar X iv :1 61 1. 01 15 9v 1 [ as tr oph .H E ] 3 N ov 2 01 6 Precessing NSBH ejecta 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers

We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion discs formed in neutron star mergers. We compute the element formation in disc outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disc evolution. We employ long-term axisymmetric hydrodynamic disc simulations to model the eje...

متن کامل

Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disk ejecta from neutron star mergers

We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion disks formed in neutron star mergers. We compute the element formation in disk outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disk evolution. We employ long-term axisymmetric hydrodynamic disk simulations to model the eje...

متن کامل

Dynamics, nucleosynthesis, and kilonova signature of black hole - neutron star merger ejecta

We investigate the ejecta from black hole neutron star mergers by modeling the formation and interaction of mass ejected in a tidal tail and a disk wind. The outflows are neutron-rich, giving rise to optical/infrared emission powered by the radioactive decay of r-process elements (a kilonova). Here we perform an end-to-end study of this phenomenon, where we start from the output of a fully-rela...

متن کامل

0 Nuclear Matter and its Role in Supernovae , Neutron Stars and Compact Object Binary Mergers 1

The equation of state (EOS) of dense matter plays an important role in the supernova phenomenon, the structure of neutron stars, and in the mergers of compact objects (neutron stars and black holes). During the collapse phase of a supernova, the EOS at subnuclear densities controls the collapse rate, the amount of deleptonization and thus the size of the collapsing core and the bounce density. ...

متن کامل

Dynamical Mass Ejection from Binary Neutron Star Mergers

We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016